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This was partially dissolved in 200 mL of absolute EtOH, 
treated with 0.5 g of Pt02, and hydrogenated on the Parr shaker 
at up to 50 psi for 24 h. During this time the bottle was vented 
and refilled with hydrogen several times. The catalyst was re­
moved by filtration and the filtrate was taken to dryness in vacuo 
leaving a foam which failed to crystallize. It was dissolved in warm 
/-PrOH, treated with charcoal, and filtered. The filtrate was 
acidified with a solution of HC1 in i-PrOH. Ether was added, 
precipitating a mixture of gum and solid. This was twice dissolved 
in warm f-PrOH and precipitated by adding ether. The second 
time, the first material that precipitated was somewhat gummy. 
This was removed and addition of more ether to the filtrate gave 
a near white solid which was dried several days in vacuo over P205 
at 56 °C to give 29, 4.3 g (28%), softening and decomposition at 
125-160 °C. Anal. (C17H28N203-2HC1-H20) C, H, N, CI. 

2,3-c/s-5-[3-[(l,l-Dimethylethyl)amino]-2-hydroxyprop-
oxy]-l,2,3,4-tetrahydro-8-iodo-2,3-naphthalenediol (25). To 
a solution of 25.0 g (0.081 mol) of 15 in a mixture of 250 mL of 
H20 and 8.5 mL of concentrated hydrochloric acid at 15 °C was 
added dropwise over 30 min a solution of 13.2 g of IC1 in 17.5 ml, 
of concentrated hydrochloric acid. When approximately 80% of 
the IC1 had been added, the solution became cloudy and an oil 
precipitated from the reaction mixture. The solution was allowed 
to warm to room temperature and then stirred for an additional 
30 min, during which time the oily precipitate dissolved. The 
solution was made basic by the addition of 25 mL of 50% aqueous 
NaOH and then extracted with CH2C12 (5 X 250 mL). Con­
centration of the CH2C12 extracts in vacuo gave an oil which 
crvstallized on standing. Recrystallization from CHC13 gave 15.8 
g (45%) of 25, mp 140-141 °C. Anal. (C17H26N04I) C, H, N, I. 

4-(2,3-Epoxypropoxy)-5,6,7,8-tetrahydro-l,2-naphtha-
lenediol (57g). To a well-stirred solution of 26.8 g (0.10 mol) 
of freshly prepared potassium nitrosodisulfonate (Fremy's salt) 
in 1.80 L of H20 and 0.18 L of 7 6 M KH2P04 at 0-5 °C was added 
a solution of 9.24 g (0.042 mol) of epoxide 57p in 250 mL of ether. 
The mixture was stirred at 0-5 °C for 30 min, followed by addition 
(in one portion) of a solution of 26.8 g (0.10 mol) of Fremy's salt 
in 1.8 L of H20 and 0.18 L of 7 6 M KH2P04 precooled to 0-5 
°C. The mixture was stirred for an additional 30 min, CHCl;i was 
added, and the layers were separated. The aqueous layer was 
thoroughly extracted with CHC13; the combined organic extracts 
were washed with saturated aqueous NaCl, dried, and concen­
trated in vacuo to give 9.0 g (85%) of solid red-orange quinone 
58. 

A suspension of the above quinone 58 (9.0 g) in 250 mL of 
EtOAc was hydrogenated in the presence of 1.0 g of 5% Pd/C 
(Parr shaker). After uptake of 1 equiv of H2 (10 min), the solution 
was warmed briefly to dissolve precipitated product, the catalyst 

filtered off (Celite), and the filtrate concentrated in vacuo to an 
off-white solid. Trituration with ether gave 8.0 g (89%) of 
crystalline epoxide 57g. 
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The SIMCA method of pattern recognition (PaRC) was used to analyze structure-activity data for a series of 
phenethylamine agonists and antagonists of the /3-adrenergic receptor. On the basis of physicochemical substituent 
parameters the SIMCA method classified correctly 100% of the agonists and 88% of the antagonists. In addition, 
parameters derived from the class models were correlated with the biological activities of the agonists and antagonists, 
respectively. Test compounds not included in the initial data analysis were classified and their activities estimated. 
The applicability of pattern recognition in structure-activity studies in general is discussed. 

Since the early reports of Hansch2 a and Free and 
Wilson2b using multivariable regression to systematically 
analyze biological structure-activity data, a field of re­
search interest has developed around the philosophy of 
relating structural changes within a class of pharmaco­

logically similar agents to changes in biological activity. 
The work of Hansch and his co-workers is especially 
significant in that it has shown that structurally and 
physicochemically similar substances can behave phar­
macologically in regular and predictable manners. 
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Figure 1. Graphical representation of the classification problem. 

In order to treat biological structure-activity data of 
structurally and physicochemically similar substances 
which can fall into two or more pharmacological classes, 
other methods of data analysis are necessary. 

Efforts to treat such more complex problems have relied 
on various methods of classification such as discriminant 
analysis,3 principal component analysis,4,5 and other 
pattern recognition methods.6^10 

This article discusses first the general applicability of 
pattern recognition methods to problems of structure 
activity. Second, it reports a specific application of the 
SIMCA method11,12 to the problem of classifying two series 
of phenethylamine agonists and antagonists of the /3-
adrenergic receptor using data reported by Lefkowitz et 
al.13 The general structure of these substances is I. 

O 'CH-CH-NH-R? 

I I 
R R, 

I 

Scope of Classification Studies. In the terminology 
of classification and pattern recognition, the general scope 
of classification studies is to find rules for the classification 
of objects (in our case, drugs = chemical compounds) on 
the basis of the values of a number of variables charac­
terizing these objects. Objects of the training set in a given 
study have a "known" class assignment and are used for 
the methodology to "learn" the characteristics of each class. 
Objects in the test set are initially of unknown class as­
signment. One of the goals of the analysis is to assign these 
objects to a class on the basis of the patterns found on the 
training set. In structure-activity studies, the variables 
are derived from the structure of the compounds, typically 
the presence of structural units, the length of side chains, 
etc. 

The classification problem has a nice graphical inter­
pretation as shown in Figure 1. The data characterizing 
each object (k) consist of the values of M variables, i.e., 
an M-dimensional vector Cy,,*). Hence, this vector can be 
represented as a point in an M-dimensional space obtained 
by giving each variable an orthogonal coordinate axis. The 
object vectors "known" to belong to one class are hopefully 
situated in a region of this space that is different from the 
site of object vectors of other classes. In this way, all 
classification methods can be seen as ways to mathe­
matically describe the separation of these regions and of 
finding out in which region objects of the test set are 
situated. 

In most recently published examples of the use of 
pattern recognition to treat biological structure-activity 
data, large training sets with large numbers of variables 
were used. In this example such is not the case. In order 
to form a basis for pattern recognition as applied in the 

present paper, each class reference set should contain at 
least five to ten objects. Increasing the size of the data 
set to more than 20 objects in each class reference set 
usually does not lead to a marked improvement in the 
resulting information if the additional compounds are 
sufficiently similar to those in the reference set. The same 
argument holds for the number of variables characterizing 
the objects. At least five to ten variables are usually 
needed to make pattern recognition worthwhile and 
numbers far above 20 often lead to redundancies. Thus, 
it is not necessary to use large training sets to get good 
results. The methodology indicates how much information 
is contained in a given data set. The important thing is 
if this information is sufficient to answer the questions 
posed in the given problem. 

Four levels of classification can be recognized. 
(1) Classification into either of a number of defined 

classes, e.g., agonist or antagonist. Such methods as 
discriminant analysis and the linear learning machine are 
most often applied at this level. Since the result of such 
applications is mere classification, which often is trivial 
for the experienced pharmacologist, criticism of the use 
of the methods on this level in structure-activity studies 
has resulted.14 

(2) Classification as in (1) above with the possibility that 
an object is an "outlier", i.e., that it does not belong to any 
of the defined classes. In the present application, this 
would correspond to allowing for a compound to be neither 
an antagonist nor an agonist. In structure activity, this 
is usually the lowest realistic ambition level. Thus, the 
crucial point in the present study is not whether a com­
pound is an agonist or antagonist but whether a new 
compound structurally similar to the previously investi­
gated compounds is an agonist, antagonist, or neither. In 
M-dimensional space, this corresponds to a containment 
of each class in a closed structure. If a new object is inside 
a structure it belongs to the corresponding class; if it is 
outside all structures it is an "outlier". 

(3) At this level the scope is that of level 2 plus the 
ambition to relate the position of an object within a given 
class to a measured activity of the object (compound). This 
is the ambition level of the present investigation. On each 
of his investigated compounds, Lefkowitz and his co­
workers measured agonist potency or antagonist potency 
and, also for the agonists, intrinsic activity. Thus, we wish 
to relate the structure of the compounds to their phar­
macological class, as agonist or antagonist, and to their 
level of biological activity within their respective class. 
Mathematically this corresponds to containment of the 
objects in each class in a closed mathematical structure 
and finding a relation between the position within this 
structure and the measured activity. 

(4) On the highest level, finally, several "effect" variables 
have been measured on each object and one wishes to 
relate all of these to the position of the objects within the 
classes. This problem is also common in structure-activity 
studies. Often several different measurements of the 
biological activity of each compound have been observed, 
say, the activity in different test systems such as rat, rabbit, 
dog, monkey, and man. In addition, the levels of side 
effects might be available on the same test systems. 

Somewhat paradoxically, this problem is often simpler 
mathematically than the level 3 problem. The reason is 
that several "effect" variables can be used to define a 
systematic structure in an "effect space" in the same way 
as the characterizing variables are used to define a sys­
tematic structure in the measurement space discussed 
above. These two "systematic structures" can then be 
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Table I. Biological and Physicochemical Data for Agonists and Antagonists 
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object 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 

X 

18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
17 
17 
17 
17 
20 
18 
17 
20 
19 
17 
17 
21 
18 
18 
18 
18 
17 
18 
18 
18 
18 
17 

Y 

18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
18 
19 
19 
19 
20 
19 
18 
18 
18 
17 
18 
20 
17 
17 
17 
17 
17 
17 
17 
22 
23 
18 
17 
17 
18 
17 

R 

OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
H 
H 
OH 
H 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
OH 
H 
H 
H 

R, 

2 
3 
1 
1 
3 
3 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
2 
1 
1 

16 
2 
3 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 

XH 

Y' 

R2 

1 
1 
2 
4 
4 
5 
6 
7 
8 
9 

10 
11 

4 
4 

12 
1 
2 
2 
3 
4 
4 
1 
4 
4 
1 
2 
4 
8 

13 
14 
13 
15 

1 
1 
1 
1 
1 

P-
class 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
1 
0 
0 
0 
0 
0 

-CH-CH-NH-R, 
1 1 

R R, 

IAQ 

0.87 
0.71 
0.75 
1.00 
0.72 
0.64 
1.10 
1.10 
0.25 
0.25 
1.20 
0.17 
0.28 
0.24 
0.27 

act.0 

4.39 
4.42 
5.00 
5.85 
4.35 
4.51 
6.33 
6.37 
4.68 
5.04 
7.10 
5.04 
6.00 
5.48 
7.10 
3.51 
3.66 
3.87 
4.29 
5.89 
4.96 
4.52 
6.40 
5.80 
3.85 
4.07 
5.35 
5.74 
6.62 
6.89 
7.22 
5.64 
4.04 

<3.00 
<3.00 
<3.00 

P * b a 

4.55 
4.74 
5.07 
5.77 
4.62 
4.41 
6.17 
6.17 
4.33 
4.62 
7.22 
4.64 
5.62 
6.19 
7.85 
4.08 
4.19 
4.28 
4.66 
5.38 
4.82 
4.46 
6.24 
5.89 
4.29 
5.04 
4.85 
5.06 
5.85 
6.74 
7.12 
5.11 

<3.70 
<3.70 
<3.70 
<3.70 
<3.70 

pKa
b 

8.93 
8.93 
9.29 
9.90 
9.90 
9.93 
9.19 
9.19 

10.03 
10.29 

9.29 
10.22 

9.94 
9.77 
9.29 
8.93 
9.29 
9.29 
9.61 
9.90 
9.90 
8.93 
9.90 
9.90 
8.46 
9.29 
9.90 
9.03 
8.16 
9.29 
8.16 

10.26 
8.93 
8.93 
8.93 
8.93 
9.80d 

/Phc 

1.14 
1.14 
1.14 
1.14 
1.14 
1.14 
1.14 
1.14 
1.14 
1.14 
1.14 
1.14 

-0.07 
-0 .07 
-0 .07 

2.66 
0.55 
1.36 
1.36 
2.04 
1.36 
1.36 
3.34 
0.55 
1.90 
1.90 

-0 .94 
1.36 
1.36 
1.36 
1.04 
1.96 
1.14 
1.36 
1.36 
1.14 
1.90 

a Reference 13. b Estimated using the procedure of Clark and Perrin. 
Pomona College Medicinal Chemistry Data Bank. 

Corrected for proximity when required. 

related to each other using rather simple mathematical-
statistical methods. 

Present Study. The data of Lefkowitz and his co­
workers contained 37 compounds (objects of general 
structure I) of which 15 were agonists and 17 were an­
tagonists. The compounds, norepinephrine, tyramine, 
octopamine, dopamine, and phenethylamine, were also 
included in the study as a test set. Norepinephrine is a 
weak agonist while the other four substances are neither 
agonists nor antagonists. 

The biological evaluations were made on racemic 
mixtures. The affinity of all compounds for the j3 receptor 
was measured by the ability of the compound to displace 
(-)-[3H]alprenolol from its binding site in receptors par­
tially purified from frog erythrocytes. In addition, the 
ability of the compounds to stimulate (agonists) or to 
inhibit agonist stimulation (antagonists) of the /3-adrenergic 
coupled adenylate cyclase was also determined. These 
activities were reported as K values in ^M and were 
converted for this study to the pK scale in M units. For 
agonists both the affinity and the intrinsic activity were 
reported; the intrinsic activity was on a scale of isopro­
terenol equal to 1.0. For antagonists, the relative affinity 
for this reaction was reported. 

Describing the Structure by a Set of Variables. A 
critical factor in classification studies in structure activity, 

no matter which method is used, is the appropriate de­
scription of the objects being classified. In previously 
reported pattern recognition (PaRC) studies, various 
structural descriptors and measured variables were used, 
e.g., mass spectral data,6 molecular transforms,10 and 
descriptors which could be generated from a two-di­
mensional representation of the structures.5,7"9 The 
generation and utility of such descriptors have been 
discussed.15,16 In this report we take a different approach 
which may be considered an extension of the extrather-
modynamic assumptions as used by Hansch and his co­
workers. In describing the agonists and antagonists, 
physicochemical parameters have been used. It is assumed 
that differences in specific drug-receptor interactions 
determine the classification outcome. Therefore, physi­
cochemical parameters which best model these interactions 
were used as the basis of classification. Descriptors rel­
evant to the problem such as Hammett a constants,17 

hydrophobic constants,18,19 and steric constants20,21 were 
utilized. We have also included as a variable the exper­
imentally determined receptor binding constant as re­
ported. The binding constants for the objects in the test 
set could not be quantified, but upper limits were assigned. 
The use of these values will therefore introduce uncertainty 
into the classification of these objects. The objects and 
their descriptor variables are given in Table I. 
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The first objective of the present study is to find rules 
to classify compounds of general structure I as agonists or 
antagonists or neither. Since this is a classification 
problem a method of pattern recognition must be used, 
and a method operating at least on level 2 (see above) must 
be chosen. Also, since SIMCA is not designed to maximize 
the separation between the classes, but rather designed to 
describe each class in an operational sense, the method is 
not sensitive to a large number of variables as compared 
to the number of objects. 

The second objective of the study is to relate the 
structural descriptors of the compounds to the measured 
level of activity. Here a multiple regression would seem 
appropriate. However, the number of variables (13) is too 
large to make a multiple regression numerically stable. We 
instead use the SIMCA method which extracts the sys­
tematic data structure in each class and expresses these 
as variable specific parameters (m; and bia) and object 
specific (uak) terms. The latter parameters can then be 
related to the activity by a multiple regression since the 
uak parameters are few compared to the initial number of 
variables and the resulting multiple regression is stable. 
In conclusion, the SIMCA method is the only method 
presently developed which can fulfill the scope of the 
present problem, classification and prediction of the level 
of activity of the objects. 

SIMCA Method. The basis of the pattern recognition 
method used in this report is that the data of objects in 
a class can be described by a principal components (PC) 
model. 

A 

yiM = mi + "Lbiauak-+ eik 
0 = 1 

Here yiik denotes the value of variable i observed on object 
k. The parameters of the model, mit bia, and uak, are 
estimated as to make the residuals eik minimal in the 
least-squares sense over all objects k and all variables i in 
the class. 

Geometrically, this corresponds to an A-dimensional 
hyperplane in the M-dimensional measurement space 
which has the closest fit to the data points of the class. 
The values of the parameters m* and bia define the central 
point and the direction coefficients of the plane, respec­
tively. The values of the parameters uak define the position 
on this plane of the feth object in the training set. Thus, 
the SIMCA method describes the region of each separate 
class by means of a separate hyperplane and a closed area 
on this plane upon which all objects in the training set of 
that class are situated. 

In addition, the residual standard deviation (RSD) of 
the class, saq, defines a confidence "slab" around the class 
plane within which an object should be situated to really 
belong to the class. This is shown in Figure 2. 

Thence, SIMCA contains the objects in closed mathe­
matical structures, "hyper-boxes", and thus always op­
erates on at least ambition level 2 in the scheme discussed 
above. We see that the position within a class is defined 
by the values of the components uak. Hence, a problem 
on ambition level 3 or 4 is approached by SIMCA as 
finding relations between these parameters and the 
measured "effect" variables on the same objects, usually 
by some simple linear model, i.e., multiple regression. This 
corresponds to the "target rotation" of Weiner and 
Weiner22 in the closely analogous factor analysis and to a 
simplified path model of PLS type.23 

SIMCA has a theoretical foundation similar to that of 
polynomial models, i.e., on the basis of Taylor expansions. 
Thus, it can be shown that (a) provided that the variables 
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u l 

]}-2RSD 

Plane of class 1 

Plane of class 2 

]>2RSD 

Figure 2. The SIMCA description of each class by means of a 
plane with RSD and ut. 

characterizing the objects of a class have certain continuity 
properties and that (b) the objects are realizations of a 
process with limited variability, that the data of the objects 
can be arbitrarily closely approximated by the above PC 
model with a limited number of product terms, A. 

Since SIMCA fits the class models to the data of the 
objects in the training set by least squares, the method does 
not assume any particular distribution of the data. SIMCA 
can be considered to be a nonparametric method in the 
pattern recognition nomenclature. 

The data analysis in the SIMCA framework is done as 
follows. 

(1) For each class, q, the number of components, Aq, in 
the PC model required to describe the data of the objects 
in each class is determined. This is called determining the 
rank of the data matrix and is done by cross-validation.24 

(2) The parameters m,-9, bia
q, and uah

q for a = 1, 2,..., Aq 
are determined in each class model for the data of the 
training set. This corresponds to finding the A-dimen-
sional plane of closest fit to the points of the class in M 
space. 

(3) The resulting residuals of each class, eik
q, are used 

to assess the importance of each variable i. 
Variables can be significant in classification in two ways: 

(1) in their ability to describe the class structure and (2) 
their ability to distinguish between classes. Their ability 
to describe class structure we call modeling power (\pi), 
while their ability to distinguish between classes we call 
discrimination power (0;). The modeling power of a 
variable is obtained by comparing its residual standard 
deviation, Sit over all data in the training set with the 
corresponding standard deviation, Sic/, of the training set 
data y. 

b = 1 - St/S^ 

A value for \pt approaching 1 indicates high modeling power 
while a value near 0 indicates low modeling power. This 
parameter can also be calculated for a variable over one 
class by comparing the corresponding within class standard 
deviations. This measures the modeling power of a var­
iable in defining one single class. The discrimination power 
of a variable is a measure of the distance between two 
classes over all variables. This is obtained by comparing 
the fit of objects of the two classes (q and r) to their own 
class with that of their fit to the other class. This is given 
as 

[ (V)2 + (s,/)2 "I 

(Si/)2 + (SiJ)2 J 

Here st/ denotes the standard deviation of the residuals 
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parameters m, b, and u are reestimated for the reduced 
data matrix. 

(4) Classification of the objects in the test set is done 
by fitting the data for each object to each class model, q, 
i.e., the equation below with mf and bia

q fixed to the values 
determined in step 2. The index p refers to the pth object. 

A, 

v - m = Y t qb- q + e q 

Jip ni'i i—i^ap uia ' Kip 
a = l 

Multiple regression is used with the tap
q,s being re­

gression coefficients for the fit of the object p to the q class 
model. The residual standard deviation from each fit is 
a measure of the orthogonal distance of the object from 
the classes. Classification as being a member of a specific 
class or being a member of none of the classes can be made 
on the basis of this parameter. 

Results 
In applying SIMCA in this problem, the variables were 

first regularized to give them equivalent variance and 
means of zero. This procedure gives equivalent weight to 
the variables with small variation and to those with large 
variation and, thence, prevents masking of the variables 
with little variation by those with large variation. 

Classification as Agonists or Antagonists. Our first 
objective was to find PC models which would separate the 
0 agonists from the antagonists. Analysis with all variables 
showed that the agonists (class 2) could be well described 
by a PC model with two components (A = 2). The an­
tagonists (class 1) could be described by a one-component 
model. On the basis of low modeling power and low 
discriminatory power the variables am, /ph, Bm, and Lm were 
deleted from both classes. On the basis of the remaining 
variables (<rp, Lp, Bp, fm, /R2, £S.R2, crR2, pKb, and pKa) PC 
models with A = 3 components sufficiently described both 
classes. The results are given in Tables II and III. The 
coefficients 6, of the variables are normalized such that 

M 

Zb? = 1 
i=i 

On the basis of these models 100% (15/15) classification 
of the agonists and 88% (15/17) of the antagonists re­
sulted. 

Validation of these results was made by omitting every 
fourth object in each class making these actually a "mini" 
test set. The parameters in the PC models were estimated 

Table III. bia Values 

nif 

bi, 
6 p 
bit 

m, 
K 
bi-
b« 

mi 
bu 
bi, 

m,-
bu 
bu 

pKh 

-0 .14 
-0 .24 
-0 .33 
-0 .03 

0.15 
-0 .42 

0.61 
-0 .33 

0.10 
-0 .37 

0.32 

0.23 
-0 .55 

0.33 

f*> 

0.02 
-0 .16 
-0 .14 
-0 .28 

-0 .03 
0.41 

-0 .31 
-0 .84 

0.40 
0.42 

-0 .71 

-0 .67 
0.00 
0.00 

/ R 2 

-0 .20 
-0 .28 
-0 .42 

0.06 

0.23 
-0 .44 
-0 .33 
-0 .01 

-0 .13 
-0 .39 
-0 .22 

0.77 
0.06 
0.70 

oR* 

0.07 
0.36 
0.08 

-0 .44 

-0 .08 
0.45 
0.21 
0.28 

0.05 
0.49 
0.38 

-0 .29 
0.23 

-0 .12 

£ s - R j 

0.12 
0.33 
0.25 

-0 .35 

-0 .14 
0.51 
0.16 
0.20 

0.04 
0.53 
0.19 

-0 .40 
0.10 

-0 .50 

P#a "m 

class 1 
-0 .26 
-0 .25 

0.40 
0.56 

class 2 
0.29 

-0 .10 
-0 .60 

0.27 

class 3 
-0 .06 0.05 
-0 .10 0.00 
-0 .41 0.00 

class 4 
0.81 0.46 
0.23 -0 .19 

-0 .12 -0 .08 

°P 

0.64 
-0 .02 

0.58 
0.05 

-0 .73 
0.00 
0.00 
0.00 

/Ph 

-0 .06 
0.00 
0.00 

-0 .82 
0.36 
0.16 

Sp 

0.00 
-0 .52 

0.30 
-0 .34 

0.00 
0.00 
0.00 
0.00 

i p 

-0 .14 
- 0 . 5 1 

0.14 
-0 .40 

0.16 
0.00 
0.00 
0.00 

Bm 

-0 .18 
0.00 
0.00 

0.67 
-0 .39 
-0.17 

• ^ m 

-0 .09 
0.00 
0.00 

0.99 
-0 .50 
-0 .22 
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Table II. Uj- and RSD for Classes 1 and 2 and Test Set0 

RSD 

object «, u2 u3 class 1 class 2 

class 2 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 

3.54 
4.04 
0.84 

-0 .58 
1.03 
0.78 

-1 .29 
-1 .18 

0.23 
-1 .05 
-2 .32 
-0 .15 
-0 .51 
-0 .25 
-3 .14 

1.22 
0.90 
0.79 
0.07 

-1 .49 
-1 .89 

0.62 
0.71 

-0 .90 
-1 .60 

1.01 
-1 .08 
-0 .02 

0.67 
0.98 

0.45 
-0 .79 

0.71 
0.40 

-1 .53 
-1 .48 
-0 .10 
-0 .10 

1.24 
0.89 

-0 .76 
1.22 
0.45 
0.37 

-0 .98 

0.78 
1.00 
0.70 
0.64 
1.10 
1.10 
0.46 
0.46 
0.90 
0.90 
0.63 
0.98 
0.63 
0.78 
0.72 

0.18 
0.28 
0.42 
0.40 
0.24 
0.09 
0.31 
0.25 
0.20 
0.19 
0.20 
0.33 
0.38 
0.51 
0.39 

class 1 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 

3.65 
1.89 
1.87 
1.33 

-1 .31 
-0 .59 

3.11 
-1 .52 
-3 .59 

3.66 
1.45 

-4 .28 
-0 .28 
-0 .73 
-1 .73 
-1 .05 
-1 .87 

0.66 
0.48 
0.45 
0.28 
1.43 

-0 .30 
0.70 
1.14 
1.46 
0.73 
0.00 
2.46 

-1 .35 
-2 .59 
-2 .57 
-3 .02 

0.02 

-1 .31 
0.98 
0.98 
1.51 
0.82 
1.04 

-1 .19 
0.79 

-0 .88 
-1 .12 

0.56 
-1 .85 
-0 .64 
-0 .86 

0.24 
-0 .95 

1.84 

0.21 
0.25 
0.23 
0.15 
0.50 
0.80 
0.58 
0.74 
0.89 
0.39 
0.62 
0.70 
0.50 
0.41 
0.50 
0.50 
0.58 

1.20 
1.20 
1.10 
1.10 
1.30 
0.34 
1.00 
1.30 
1.70 
1.10 
1.10 
2.20 
0.46 
0.79 
0.58 
0.56 
0.79 

test set 
33 
34 
35 
36 
37 

3.35 
3.36 
3.36 
3.36 
3.15 

1.12 
1.15 
1.15 
1.15 
1.75 

1.86 
1.85 
1.85 
1.85 
0.04 

0.92 
0.92 
0.92 
0.92 
0.61 

0.33 
0.35 
0.35 
0.35 
1.00 

a Class 1, RSD = 0.53; class 2, RSD = 0.31. 

of the ith variable obtained when the objects in the rth 
reference set are fit to the <?th class model. 

The range of 0 is <p - 1 with values larger than 2 in­
dicating good discrimination for that variable. In an 
analysis, variables with low \p and <t> are deleted and the 
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Table IV. u,- and RSD for Subclassification of Agonists0 

object 

1 
2 
3 
4 
5 
6 
7 
8 

11 

16 
10 
12 
13 
14 
15 

« i 

3.04 
3.56 
0.25 

-1 .15 
0.43 
0.20 

-1 .79 
-1 .69 
-2 .85 

2.13 
-1 .87 

2.06 
-1 .39 
-1 .67 
-3 .01 

" 2 

class 3 
1.25 
0.31 
1.00 
0.22 

-2 .12 
-2 .37 

0.58 
0.63 
0.50 

class 4 
-0 .24 

0.86 
0.18 

-1 .19 
-1 .47 

1.86 

RSD 

class 3 

0.11 
0.39 
0.52 
0.54 
0.15 
0.17 
0.34 
0.24 
0.44 

0.71 
0.74 
0.78 
1.20 
1.20 
1.30 

class 4 

1.30 
1.60 
0.76 
0.58 
1.10 
1.00 
0.59 
0.63 
0.81 

0.23 
0.30 
0.19 
0.25 
0.16 
0.09 

" Class 3 (strong agonists), RSD = 0.31; class 4 (weak 
agonists), RSD = 0.21. 

^ 2 6 

Figure 3. 
activity, • 

Ui plot for class 1: 
= high activity. 

A = low activity, 9 = medium 

from the reduced training set and this mini test set was 
then classified. The training set was then restored and 
another quarter was deleted to form another mini test set 
and so on until all compounds had been in such a test set 
one time and one time only. All objects in class 2 were 
correctly classified when placed in these test sets while 
objects 28 and 29 were misclassified in the validation of 
class 1. 

Objects 33-37 in the test set were classified as discussed 
earlier with their RSD given in Table IV. Object 33 is 
norepinephrine and is correctly classified as an agonist. 
Objects 34-36, tyramine, octopamine, and dopamine, are 
also classified as agonists. 

Lefkowitz classifies dopamine as an agonist even though 
it had no detectable intrinsic activity and its affinity was 
determined as an antagonist. Tyramine and octopamine 
were both classified as antagonists by Lefkowitz although 
neither [3H]alprenolol binding nor inhibition of isopro­
terenol stimulation of adenylate cyclase synthesis could 
be quantified. Compound 37 is phenethylamine, which 
had no detectable activity as agonist or antagonist. SIMCA 
classified it as an antagonist. Thus classification of objects 
34-37 in itself is not sufficient to clarify their identity. 

Relating the Position in the Class to Level of Ac­
tivity. One of the basic assumptions in applying SIMCA 
and other PaRC methods in structure-activity studies is 
that structurally similar substances will cluster in the 
measurement space chosen to represent the objects. It, 
therefore, follows that within the measurement space, those 

8,', 

AI0 
J I 1 £ll_ 

- * -3 -3 -} O ! 2 3 A 5 

Figure 4. u,- plot for class 2: A = low activity, 9 = medium 
activity, • = high activity. 

Figure 5. Activity estimation for class 1: 9 = test set. 

Figure 6. Activity estimation for class 2: 9 = test set. 

objects with similar activities will cluster. As discussed 
above, the ut vectors are related to the position of the 
objects within each class model in the measurement space. 
By plotting the U\ vs. u2 vectors for each class, as is shown 
in Figures 3 and 4, respectively, it can be seen that there 
is indeed an activity clustering. For class 1 the less active 
substances are in the region with positive ux and u2 co­
ordinates and the more active analogues have negative ux 
and positive u2 coordinates. For class 2 the less active 
objects cluster in the region of negative u1 and negative 
u2 while the more active objects cluster with negative Uj 
and positive u2 coordinates. A plot of (ux + u2) against 
activity for class 1 (Figure 5) shows a significant rela­
tionship. Figure 6 shows a similar plot for class 2. This 
graphical analysis corresponds to a multiple regression 
relating for each class the activity to ux and u2. The 
graphical analysis is better for illustrative purposes but 
a multiple regression of activity as a function of the in­
dependent variables u1( u2, and u3 will give the same result. 

A (ui - u2) plot for the agonists in terms of intrinsic 
activity is given in Figure 7 and a graph of (ux - u2/3) with 
this activity (Figure 8) reveals a relationship between the 
u,-'s for the more active agonists while those with an in­
trinsic activity of 0.5 show no dependence on the U;'s. 
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u3 Oh 

,K. 
• • s * \ 

Figure 7. u; plot for subclassification of agonists: A = low activity, 
9 = medium activity, • = high activity. Figure 9. Activity estimation of antagonists using nonmeasured 

variables. 
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Figure 8. Activity estimation from subclassification of agonists. 

The power of SIMCA is shown when this graphical 
analysis is extended to the objects in the test set. While 
classification is not conclusive in this case, the predicted 
low activity of each of the test objects as agonists or 
antagonists removes any ambiguity. It is necessary at this 
point to emphasize that the predicted activities are 
probably the upper limits for these substances due to the 
overestimation of the binding constants that is made. 

Subclassification of the Agonists. At this point the 
agonists were divided into two groups on the basis of 
strongly active (objects 7, 9-15, and 18) and weakly active 
(objects 16, 17, and 19-22) as the graphical analysis 
suggests. This created classes 3 and 4, respectively. 
Application of SIMCA with the variables pKh, /Rl, fRl, <rR2, 
#S-RS> <V /ph> Lm, Bm, Lp, and Bp and using a two-component 
model for each class gave correct classification of all 
members of both groups. A validation analogous to the 
one previously discussed where mini test sets were formed 
by objects from the training sets gave 100% correct 
classification. Due to the small number of objects in each 
class these results must be viewed as tentative but, 
nonetheless, the ability of a PaRC method to detect and 

Figure 10. Activity estimation of agonists using nonmeasured 
variables. 

separate classes on the basis of such small differences in 
structure is encouraging. The statistical data for this 
subclassification are given in Tables III and IV. 

Predictions Based on Nonmeasured Variables 
Only. As a predictive tool, ideally, PaRC methods should 
be trained using nonmeasured variables that can be de­
duced from the molecular formula or can be looked up in 
tables. This would allow predictions to be made for objects 
without actually synthesizing them. In this study we have 
included the experimental receptor binding constant as a 
descriptor for each object in the training sets. The relevant 
predictive case would be that in which classification and 
quantification of activity could be done on an unknown 
object using only nonmeasured variables. In order to 
determine if our training sets could be used in such a 
manner, the PC models, which were derived for each 
training set with the binding constant included, were then 
applied to the training set with the pKb set to zero. The 
classification results were 88% (15/17) for the antagonists 
with objects 21 and 30 missed and 87% (13/15) for the 
agonists with objects 11 and 15 missed. Activity pre­
dictions are given in Figures 9 and 10 and it can be seen 
that the predictability is good with the antagonists but only 
fair in the case of the agonists. 

Summary of the SIMCA Analysis. The classification 
results can be summarized as the following. For class 1, 
using a PC model with A = 3 components and the variables 
a*, /ph, Bm, and Lm deleted, all were correctly classified. 
For class 2, using the same model and variables, 88% of 
the class was classified correctly. The model parameters 
are given in Tables V and VI. If a compound closely fits 
the model for class 1 with a RSD less than 0.53, it is 
classified as an antagonist. If a compound fits the model 
for class 2 with a RSD less than 0.31 it is an agonist, and 
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Table V. Parameters for Substituents Rl and R2 

substituent 
no. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 

a Reference 19. b 

formula 

H 
CH3 
C2HS 
CH(CH3)02 

CH(CH2CH2)2 
CH(CH3)CH2C6H4-4-OH 
CH(CH3)CH2C6H3-3,4-OCH20-
CH2CH2C6H4-4-OH 
CH(CH3)(CH2)2C6H4-4-OH 
C(CH3)2CH2C6H4-4-OH 
(CH2)3C6H4-4-OH 
C(CH3)2CH2C6H5 
CH(CH3)CH2OC6Hs 
CH(CH3)(CH2)2C6HS 
C(CH3)3 
CH2CH2OH 

fa ab 'c 

0.19 0.49 
0.70 0.00 
1.23 -0 .10 
1.64 -0 .19 
2.35 -0 .20 
2.83 -0 .13 
2.56 - 0 . 1 3 
2.42 -0 .08 
3.36 -0 .13 
2.43 -0 .30 
2.95 -0 .08 
3.80 -0 .30 
2.77 -0 .13 
3.90 - 0 . 1 3 
2.24 -0 .30 
0.0 2C 

Pomona College Medicinal Chemistry Data Bank. c Corrected for proximity when 

Table VI. Parameters for Substituents X and Y 

substituent 
no. 

17 
18 
19 
20 
21 
22 
23 

formula 

H 
OH 
NHS02CH3

c 

CI 
CH2S02NH2 
CH2S02N(CH3)2 
OCH3 

< 
0.00 

-0.37 
0.03 
0.23 
0.28d 

am" Bp ~ Bm 

0.00 2.00 
0.12 2.74 
0.20 3.08 
0.37 1.80 

3.48 
0.23d 3.48e 

0.12 2.87 

Es
b 

1.24 
0.00 

-0 .07 
-0 .47 
- 0 . 5 1 
-0 .93 
-0 .93 
-0 .38 
-0 .93 
-1 .60 
-0 .38 
-1 .60 
-0 .93 
-0 .93 
-1 .60 

required. 

•kp = ^m 

1.00 
1.93 
4.06 
3.52 
5.50 
5.50e 

3.98 
a Pomona College Medicinal Chemistry Data Bank. b Reference 21 ;B = £4 in this reference, 

equal to NHSQ3CH3.
 d Estimated value. e Assumed equal to substituent 21. 

c L and B are assumed to be 

if it fits neither model within these RSD's it is an outlier 
(Table II). 

Once an unknown has been classified, its activity can 
be estimated from the tap values obtained from the ap­
propriate PC model for its class. Entering these values 
in Figure 5 or 6 will give an estimated activity for the 
unknown. 

Agonists with intrinsic activity greater than 0.50 are well 
fit by a PC model with A = 2 components with the var­
iables <7p, B„, and Lp deleted and the parameters given in 
Table IV. The activity of such an agonist can be predicted 
from the £ap's found on fitting the compound to this 
two-component model and the plot in Figure 8. 

Discussion 
The results reported here show that PaRC methods can 

give significant information from biological structure-
activity data. In using PaRC methods for a specific 
problem, the problem must be formulated in such a way 
that the required level of classification as presented in this 
report is recognized. There are various methods of PaRC 
available and in the analysis of structure-activity data the 
choice of method should be based on the level of classi­
fication required. 

The PaRC method is "trained" on reference sets of 
compounds of known class assignment. On these com­
pounds, both "theoretical" variables and measured vari­
ables are included to stabilize the parameters in the class 
models as much as possible. When using these models for 
predictions of the behavior of new compounds, one needs 
fewer variables defined for these compounds; the pre­
dictions can be based on only "theoretical" variables 
dedueible from the structure of the compounds. 

Some comparison of SIMCA with multiple regression 
methods is in order at this point. A major philosophical 
difference with SIMCA compared to multiple regression 

methods is that no specific model or relationship between 
structure and activity is assumed with SIMCA. One only 
assumes that such a relationship exists. 

With multiple regression one is limited to the analysis 
of data on closely related compounds. A result of this is 
that classification is not possible since one considers all 
objects in the data set to be members of the same class. 
The concept of "outliers" then becomes cumbersome to 
deal with, while with PaRC their existence is a natural 
result of the analysis. 

With multiple regression one is limited by the number 
of variables which can be used. This limitation applies not 
only to the number that can be initially selected but also 
to the number that can ultimately be used in the derived 
structure-activity relationship. This latter number should 
be as small as possible with a ratio of data points to 
variables of no less than five desirable. 

This limitation does not apply to SIMCA. Its limitation 
is that of the number of components in the PC model used 
to describe a class. The number of components, A, should 
be less than approximately M/3 where M is the number 
of variables used to characterize the object. This advantage 
of SIMCA also holds when it is compared to other clas­
sification methods such as the linear learning machine and 
linear discriminant analysis. 

Like multiple regression methods SIMCA can also be 
applied in the analysis of a single class of pharmacologically 
significant substances and activities of objects within the 
class can be estimated from the parameters of the derived 
PC model. In this case the problem is not one of classi­
fication. 

To conclude, we are pleased with the performance of 
SIMCA in this first application of the method to struc­
ture-activity data. The information obtained from the 
data analysis regarding the significance of variables and, 
in particular, regarding the predictability of biological 
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activity is, in our view, most interesting. 
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JV,iV-(Phenylene)dioxamic Acids and Their Esters as Antiallergy Agents 

John B. Wright,* Charles M. Hall,* and Herbert G. Johnson 

Hypersensitivity Diseases Research, The Upjohn Company, Kalamazoo, Michigan 49001. Received February 17, 1978 

A series of dialkyl ^^V'-(m-phenylene)dioxamates was synthesized by treatment of the requisite m-phenylenediamines 
with an alkyloxalyl chloride in the presence of triethylamine. Hydrolysis with sodium hydroxide solution gave the 
corresponding N,W-(m-phenylene)dioxamic acids. Several iV,N'-(p-phenylene)dioxamic acids were synthesized also 
in the same manner starting with the requisite p-phenylenediamines. These compounds were tested in the rat passive 
cutaneous anaphylaxis (PCA) assay. When tested iv, activity was found in the AUVMm-phenyleneJdioxamic acids 
up to 2500 times that shown by disodium cromoglycate [50% inhibition at 0.001 mg/kg for iV,iV'-(2-chloro-5-
cyano-m-phenylene)dioxamic acid (compound 61)]. Oral activity was seen in this series of compounds with duration 
of activity up to 120 min. Oral activity was detected in diethyl iV,2V'-(2-chloro-5-cyano-m-phenylene)dioxamate 
(compound 38) at levels of drug as low as 0.1 mg/kg. 

Disodium cromoglycate (1) is an antiasthma agent that 

is thought to act by inhibition of the liberation of the 
mediators of allergic reactions initiated by ant igen-
antibody reactions.1 This activity may be measured 
conveniently in rats by means of the passive cutaneous 
anaphylaxis (PCA) reaction.2 

Previously, we3 and others4 have reported that mono-
oxamic acids of the type 2 and 3 possess this same activity 
to an appreciable extent. 

Disodium cromoglycate (1), as may be seen from its 
structure, possesses a "bis-functionality". A high order of 
activity was noted5 also in the fused-ring quinaldic acids 
which also possess a bis-functionality. In order to explore 
the importance of this bis-functionality on the biological 
activity we synthesized and studied biologically a series 
of iV,N'-(phenylene)dioxamic acids and their esters. The 
results of this study are described below. 
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